Shigella flexneri Infection in Caenorhabditis elegans: Cytopathological Examination and Identification of Host Responses
نویسندگان
چکیده
The Gram-negative bacterium Shigella flexneri is the causative agent of shigellosis, a diarrhoeal disease also known as bacillary dysentery. S. flexneri infects the colonic and rectal epithelia of its primate host and induces a cascade of inflammatory responses that culminates in the destruction of the host intestinal lining. Molecular characterization of host-pathogen interactions in this infection has been challenging due to the host specificity of S. flexneri strains, as it strictly infects humans and non-human primates. Recent studies have shown that S. flexneri infects the soil dwelling nematode Caenorhabditis elegans, however, the interactions between S. flexneri and C. elegans at the cellular level and the cause of nematode death are unknown. Here we attempt to gain insight into the complex host-pathogen interactions between S. flexneri and C. elegans. Using transmission electron microscopy, we show that live S. flexneri cells accumulate in the nematode intestinal lumen, produce outer membrane vesicles and invade nematode intestinal cells. Using two-dimensional differential in-gel electrophoresis we identified host proteins that are differentially expressed in response to S. flexneri infection. Four of the identified genes, aco-1, cct-2, daf-19 and hsp-60, were knocked down using RNAi and ACO-1, CCT-2 and DAF-19, which were identified as up-regulated in response to S. flexneri infection, were found to be involved in the infection process. aco-1 RNAi worms were more resistant to S. flexneri infection, suggesting S. flexneri-mediated disruption of host iron homeostasis. cct-2 and daf-19 RNAi worms were more susceptible to infection, suggesting that these genes are induced as a protective mechanism by C. elegans. These observations further our understanding of the processes involved in S. flexneri infection of C. elegans, which is immensely beneficial to the routine use of this new in vivo model to study S. flexneri pathogenesis.
منابع مشابه
Interactions between Shigella flexneri and the Autophagy Machinery
Autophagy, an intracellular degradation process, is increasingly recognized as having important roles in host defense. Interactions between Shigella flexneri and the autophagy machinery were first discovered in 2005. Since then, work has shown that multiple autophagy pathways are triggered by S. flexneri, and autophagic responses can have different roles during Shigella infection. Here, we revi...
متن کاملThe Periplasmic Enzyme, AnsB, of Shigella flexneri Modulates Bacterial Adherence to Host Epithelial Cells
S. flexneri strains, most frequently linked with endemic outbreaks of shigellosis, invade the colonic and rectal epithelium of their host and cause severe tissue damage. Here we have attempted to elucidate the contribution of the periplasmic enzyme, L-asparaginase (AnsB) to the pathogenesis of S. flexneri. Using a reverse genetic approach we found that ansB mutants showed reduced adherence to e...
متن کاملShigella flexneri Inhibits Intestinal Inflammation by Modulation of Host Sphingosine-1-Phosphate in Mice
Infection with invasive Shigella species results in intestinal inflammation in humans but no symptoms in adult mice. To investigate why adult mice are resistant to invasive shigellae, 6~8-week-old mice were infected orally with S. flexneri 5a. Shigellae successfully colonized the small and large intestines. Mild cell death was seen but no inflammation. The infected bacteria were cleared 24 hour...
متن کاملSoluble invasion plasmid antigen C (IpaC) from Shigella flexneri elicits epithelial cell responses related to pathogen invasion.
Shigella flexneri invades colonic epithelial cells by pathogen-induced phagocytosis. The three proposed effectors of S. flexneri internalization are invasion plasmid antigens B (IpaB), IpaC, and IpaD, which are encoded on the pathogen's 230-kb virulence plasmid and translocated to the extracellular milieu via the Mxi-Spa translocon. To date, there are no definitive functional data for any purif...
متن کاملIpaD-loaded N-trimethyl Chitosan Nanoparticles Can Efficiently Protect Guinea Pigs against Shigella Flexneri
Background: Shigella flexneri is a pathogen responsible for shigellosis around the world, especially in developing countries. Many immunogenic antigens have been introduced as candidate vaccines against Shigella, including N-terminal region of IpaD antigen (NIpaD). Objective: To evaluate the efficiency of O-metylated free trimethyl chitosan na...
متن کامل